405 research outputs found

    Unsupervised Feature Learning by Deep Sparse Coding

    Full text link
    In this paper, we propose a new unsupervised feature learning framework, namely Deep Sparse Coding (DeepSC), that extends sparse coding to a multi-layer architecture for visual object recognition tasks. The main innovation of the framework is that it connects the sparse-encoders from different layers by a sparse-to-dense module. The sparse-to-dense module is a composition of a local spatial pooling step and a low-dimensional embedding process, which takes advantage of the spatial smoothness information in the image. As a result, the new method is able to learn several levels of sparse representation of the image which capture features at a variety of abstraction levels and simultaneously preserve the spatial smoothness between the neighboring image patches. Combining the feature representations from multiple layers, DeepSC achieves the state-of-the-art performance on multiple object recognition tasks.Comment: 9 pages, submitted to ICL

    A Novel Admission Control Model in Cloud Computing

    Full text link
    With the rapid development of Cloud computing technologies and wide adopt of Cloud services and applications, QoS provisioning in Clouds becomes an important research topic. In this paper, we propose an admission control mechanism for Cloud computing. In particular we consider the high volume of simultaneous requests for Cloud services and develop admission control for aggregated traffic flows to address this challenge. By employ network calculus, we determine effective bandwidth for aggregate flow, which is used for making admission control decision. In order to improve network resource allocation while achieving Cloud service QoS, we investigate the relationship between effective bandwidth and equivalent capacity. We have also conducted extensive experiments to evaluate performance of the proposed admission control mechanism

    THE ROLE OF SELECTIVE AUTOPHAGY AND CELL SIGNALING IN FUNGAL DEVELOPMENT AND PATHOGENESIS

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Integrated Sensing, Computation, and Communication: System Framework and Performance Optimization

    Full text link
    Integrated sensing, computation, and communication (ISCC) has been recently considered as a promising technique for beyond 5G systems. In ISCC systems, the competition for communication and computation resources between sensing tasks for ambient intelligence and computation tasks from mobile devices becomes an increasingly challenging issue. To address it, we first propose an efficient sensing framework with a novel action detection module. It can reduce the overhead of computation resource by detecting whether the sensing target is static. Subsequently, we analyze the sensing performance of the proposed framework and theoretically prove its effectiveness with the help of the sampling theorem. Then, we formulate a sensing accuracy maximization problem while guaranteeing the quality-of-service (QoS) requirements of tasks. To solve it, we propose an optimal resource allocation strategy, in which the minimal resource is allocated to computation tasks, and the rest is devoted to sensing tasks. Besides, a threshold selection policy is derived. Compared with the conventional schemes, the results further demonstrate the necessity of the proposed sensing framework. Finally, a real-world test of action recognition tasks based on USRP B210 is conducted to verify the sensing performance analysis, and extensive experiments demonstrate the performance improvement of our proposal by comparing it with some benchmark schemes

    Design and Performance Analysis of Wireless Legitimate Surveillance Systems with Radar Function

    Full text link
    Integrated sensing and communication (ISAC) has recently been considered as a promising approach to save spectrum resources and reduce hardware cost. Meanwhile, as information security becomes increasingly more critical issue, government agencies urgently need to legitimately monitor suspicious communications via proactive eavesdropping. Thus, in this paper, we investigate a wireless legitimate surveillance system with radar function. We seek to jointly optimize the receive and transmit beamforming vectors to maximize the eavesdropping success probability which is transformed into the difference of signal-to-interference-plus-noise ratios (SINRs) subject to the performance requirements of radar and surveillance. The formulated problem is challenging to solve. By employing the Rayleigh quotient and fully exploiting the structure of the problem, we apply the divide-and-conquer principle to divide the formulated problem into two subproblems for two different cases. For the first case, we aim at minimizing the total transmit power, and for the second case we focus on maximizing the jamming power. For both subproblems, with the aid of orthogonal decomposition, we obtain the optimal solution of the receive and transmit beamforming vectors in closed-form. Performance analysis and discussion of some insightful results are also carried out. Finally, extensive simulation results demonstrate the effectiveness of our proposed algorithm in terms of eavesdropping success probability
    corecore